Multi objective optimization of heterogeneous bin packaging using adaptive genetic approach
نویسندگان
چکیده
Objectives: The packing of goods in any industry is a tedious work. The proposed system evaluates the optimal packing and prediction of 3D bin packing maximize the maximize profit. Methods/Statistical Analysis: The Adaptive Genetic Algorithm (AGA) is used to solve the 3D single bin packing problem by getting the user input data such as number of bins, its size, shape, weight, and constraints if any along with standard container dimension. These inputs were stored in the database and encoded to string (chromosomes) format which were normally acceptable by AGA. Findings: The performance of the hybrid GA the Tuning algorithm is satisfactory and gives the feasible solution when compared with the other standard search algorithms. The minimum number of boxes left unloaded by using this algorithm will helps to validating the developed bin packing system. The developed Adaptive Genetic Algorithm was validated using the mathematical function. This research work is the good background of further development and analysis in this transportation domain of the following casesCase 1: Homogenous boxes of same dimensions: all the boxes packed without gap. Case 2: Homogenous boxes of arbitrary dimensions: all the boxes packed with small gaps. Case 3: Homogenous/Heterogeneous boxes of arbitrary dimensions: all the boxes packed with gaps. Application/Improvements: The proposed adaptive genetic approach is very helpful in the logistic industries, especially for cargo packaging for export this is very helpful and can be easily implement any logistic industry. Multi Objective Optimization of Heterogeneous Bin Packing using Adaptive Genetic Approach R. Sridhar1*, M. Chandrasekaran1 and Tom Page2 1Department of Mechanical Engineering, Vels University, Chennai 600117, Tamil Nadu, India; [email protected], [email protected] 2Lough borough University, Loughborough, UK; [email protected]
منابع مشابه
AERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS
In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...
متن کاملFuzzy Adaptive Granulation Multi-Objective Multi-microgrid Energy Management
This paper develops an energy management approach for a multi-microgrid (MMG) taking into account multiple objectives involving plug-in electric vehicle (PEV), photovoltaic (PV) power, and a distribution static compensator (DSTATCOM) to improve power provision sharing. In the proposed approach, there is a pool of fuzzy microgrids granules that they compete with each other to prolong their lives...
متن کاملMULTI-OBJECTIVE OPTIMIZATION OF TIME-COST-SAFETY USING GENETIC ALGORITHM
Safety risk management has a considerable effect on disproportionate injury rate of construction industry, project cost and both labor and public morale. On the other hand time-cost optimization (TCO) may earn a big profit for project stakeholders. This paper has addressed these issues to present a multi-objective optimization model to simultaneously optimize total time, total cost and overall ...
متن کاملLoad Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملAn optimization technique for vendor selection with quantity discounts using Genetic Algorithm
Vendor selection decisions are complicated by the fact that various conflicting multi-objective factors must be considered in the decision making process. The problem of vendor selection becomes still more compli-cated with the inclusion of incremental discount pricing schedule. Such hard combinatorial problems when solved using meta heuristics produce near optimal solutions. This paper propose...
متن کامل